Measurement of CP structure of Higgs-tau Yukawa coupling

XXVII International workshop on Deep-Inelastic Scattering and Related subjects

Vinaya Krishnan MB

On behalf of CMS collaboration

Institute of Physics, Bhubaneswar India

Introduction

Motivation

- The couplings of SM Higgs boson is even under charge-parity (CP) inversion.
- For gauge bosons CP odd enters only at NLO or with higher order. CP odd couplings can occur for fermions already at tree level.
- For $H \to \tau \tau$ we have model-independent measurement of the CP structure of Yukawa coupling.

The results showed in the slides are from the CMS PAS HIG-20-006

 \circ The analysis performed for full Run II data, in the channels $au_{\mu} au_{h}$ and $au_{h} au_{h}$.

Yukawa Lagrangian for H o au au decay

• The interaction of a Higgs boson h of arbitrary CP nature to τ leptons is described by the Yukawa Lagrangian.

$$\mathcal{L}_Y = -\frac{m_\tau}{v} (\kappa_\tau \bar{\tau} \tau + \bar{\kappa}_\tau \bar{\tau} i \gamma_5 \tau) h$$

Where m_{τ} is mass of the τ -lepton and the vacuum expectation value v has a value of 246 GeV. The effective mixing angle $\phi_{\tau\tau}$ for the H $\tau\tau$ coupling is defined in terms of the coupling as

$$\phi_{\tau\tau} \to 0 \ : \ \text{CP- even}$$

$$\tan(\phi_{\tau\tau}) = \frac{\bar{\kappa}}{\kappa} \qquad ; \qquad \phi_{\tau\tau} \to \frac{\pi}{2} \ : \ \text{CP-odd}$$

• $H \rightarrow \tau \tau$ events differential cross section may write as,

$$\frac{d\sigma_{(H\to\tau\tau)}}{d\phi_{CP}} \propto -\cos(\phi_{CP} - 2\phi_{\tau\tau})$$

Credits to A. Cardini for the schematic

where the angle ϕ_{CP} denotes the angle between the τ lepton decay plane in the Higgs boson rest frame.

• Measuring the angle ϕ_{CP} can probe the mixing angle $\phi_{\tau\tau}$ of the $H\to \tau\tau$ events. Which have the advantage that the measurement can be interpreted **model-independently**.

- Tau lepton decays leptonically and hadronically. The branching fraction is shown right.
- There are separate methods to construct the angle between two tau lepton decay planes ϕ_{CP} for each decay modes.

- For 1 prong decays such as $(\mu^{\pm}, e^{\pm}, \pi^{\pm})$ each decay plane constructed from charged particle momentum and **impact parameter**
- When tau decays to at least one π^0 particle, decay planes constructed from the momenta of charged and neutral pions.

- 1. Impact Parameter Method: We obtained 3-dimensional IP vector by parametrise helical trajectory
 - define four-vector $\lambda^{\pm}=(\hat{n}^{\pm},0)$ and charged momentum vectors q^{\pm} .
 - Boost the vectors into $\pi^+\pi^-$ zero-momentum frame(ZMF) of the charged decay products $\lambda^{*\pm}$, $q^{*\pm}$.
 - Calculate angle and sign,

$$\phi^* = \arccos(\hat{\lambda}_{\perp}^{*+}.\hat{\lambda}_{\perp}^{*-})$$

$$O^* = \hat{q}^{*-} \cdot (\hat{\lambda}_{\perp}^{*+} \times \hat{\lambda}_{\perp}^{*-})$$

- Define $\phi_{\mathit{CP}} = \phi^*$ if $O^* \geq 0$ else $\phi_{\mathit{CP}} = 2\pi \phi^*$
- 2. <u>Neutral pion momenta:</u> Instead of IP vector, the decay plane constructed from the momenta of charged and neutral pion.
 - On special case $(a_1^{3pr} \to \pi^\pm \pi^\mp \pi^\pm)$ select oppositely charged π^\pm pair with invariant mass closest to ρ^0 . Treat π with opposite charge to a_1^{3pr} as if it was neutral pion.
- 3. Mixed method: Cases where one hand is decay to 1 prong and other hand have neutral pion,

	Decay channels	Method used to construct ϕ_{CP}		
	$\mu\pi$	IP		
	$\mu \rho$	Mixed		
$egin{aligned} au_{\mu} au_{h}^{3pr} & \mu a_{1}^{3pr} \ \mu a_{1}^{1pr} & \mu a_{1}^{3pr} \end{aligned}$		Mixed		
	μa_1^{1pr}	Mixed		
	$\pi\pi$ IP			
	πa_1^{1pr} πa_1^{3pr}	Mixed		
	πa_1^{3pr}	Mixed		
	$\pi \rho$	Mixed		
$ au_h au_h$	ho ho	Neutral pion		
	$ ho a_1^{1pr}$	Neutral pion		
	ρa_1^{3pr}	Neutral pion		
	$a_1^{3pr}a_1^{1pr}$	Neutral pion		
	$ ho a_{1}^{1pr}$ $ ho a_{1}^{3pr}$ $ ho a_{1}^{3pr}$ $ ho a_{1}^{3pr} a_{1}^{1pr}$ $ ho a_{1}^{1pr} a_{1}^{1pr}$ $ ho a_{1}^{1pr} a_{1}^{1pr}$ $ ho a_{1}^{3pr} a_{1}^{3pr}$	Neutral pion		
	$a_1^{3pr}a_1^{3pr}$	Neutral pion		

Analysis Strategy

- The event selection, bkg. estimation and corrections are outlined in the PAS.
- Special methods implemented in the analysis for the better performance
 - Vertex Refitting: (excluding tracks from tau decay and applying BeamSpot Constraints)
 - MVA decay mode identification: (new choice of DM improves sensitivity ~20%)
 - Bkg. Flattening/symmetrisation
- Extraction of signal and background events performed via <u>ML</u> techniques
 - Neural Network for $au_{\mu} au_{h}$ events
 - BDT for $\tau_h \tau_h$ events
- ϕ_{CP} distribution gives a good discrimination for CP-even states from the CP-odd states, from that CP-mixing angle $\phi_{\tau\tau}$ extracted using maximum likelihood fit.

Final Discriminant

• ϕ_{CP} distributions of the events in the signal categories are analysed in windows of increasing MVA score. This final 2D enrolled distribution used as the final discriminant.

Estimation of $\phi_{\tau\tau}$: Combined fit

- The likelihood function $L(\overrightarrow{\mu},\phi_{\tau\tau},\theta)$, depends on Higgs boson signal strength $\overrightarrow{\mu}=(\mu_{ggH},\mu_{qqH})$, the CP-mixing angle $\phi_{\tau\tau}$ and the nuisance parameters $\overrightarrow{\theta}$.
- While performing maximum likelihood fit, we left $\phi_{\tau\tau}$ and $\overrightarrow{\mu}$ parameters freely floating.
 - Scanning over $\phi_{ au au}$ around the best fit value $\phi_{ au au}^{best}$
 - $-2\Delta \ln L = -2.(\ln(L(\phi_{\tau\tau})) \ln(L(\phi_{\tau\tau}^{best})))$

CMS Preliminary

- Dedicated 2D scan performed with the Yukawa couplings
- The measurement appears consistent with SM prediction within 68% CL.

Summary

- Presented full Run II results for the measurement of the CP structure of Yukawa interaction between the Higgs boson and the τ lepton
- Current measurement performed on the $\tau_{\mu}\tau_{h}$ and $\tau_{h}\tau_{h}$ channels.
 - The observed result on the CP mixing angle at 68 % CL of

$$\phi_{\tau\tau} = 4^{\circ} \pm 17^{\circ}(stat).$$

 $\pm 2^{\circ}(bin-by-bin)$
 $\pm 1^{\circ}(syst) \pm 1^{\circ}(theory)$

- A pure pseudo scalar boson excluded at 3.2σ significance
- Results consistent with the SM
- Further studies using $\tau_e \tau_h$ channel and measurement using polarimetric vector method for $a_1^{3pr} a_1^{3pr}$ decay mode will be included in the final publication

Back up

Baseline Di- τ event selection

- Tau lepton pair should be opposite charge and separated by at least $\Delta R = 0.5$
- Offline objects should matched with trigger object.
- Only one candidate pair of di-tau events selected in the basis of isolation and p_T of candidate pairs.

$au_h au_\mu$ events:

Large W+jets background is reduced by,

$$m_T = \sqrt{2p_T^{\mu}p_T^{miss}[1 - \cos\Delta\phi]} < 50GeV$$

- Longitudes and transverse impact parameters $|d_z| < 0.2cm$ and $|d_{xy}| < 0.045cm$ for τ_u
- au_{μ} to pass medium MuonID, au_h to pass medium, vvloose and tight DeepTau isolation against jets, electron and muon respectively

$\tau_h \tau_h$ events:

- τ_h to pass medium, vvloose and tight DeepTau isolation against jets, electron and muon respectively
- Longitudes and transverse impact parameters $|d_z| < 0.2cm$ for leading τ_h track.
- Selection of the visible di-tau mass applied for $m_{vis} > 40 GeV$
- b-tagged jet veto (medium deepCSV)

Background estimation: Data driven

- The main background process to consider are: Drell-Yan Z/γ^* , W + jets, $t\bar{t}$ + jets, QCD multi-jet, electroweak W/Z, single-top and di-boson productions
- All high fraction of backgrounds are estimated using data driven methods,
- 1. Embedded samples: is used to process with two genuine τ -leptons, mostly $Z/\gamma^* \to \tau\tau$ and a small fraction of $t\bar{t}$ and di-boson process.

Derived based on principle of lepton universality.

2. Fake factors method: is used to process jet $\rightarrow \tau_h$ events.

Mostly for,

- QCD process $(\tau_{\mu}\tau_{h} \text{ and } \tau_{h}\tau_{h})$
- W + jets $(\tau_{\mu}\tau_{h})$
- $\rightarrow t\bar{t} (\tau_{\mu}\tau_{h})$

3. MC simulation: all remaining process like $Z/\gamma^* \to ll$ estimated using MC generator

Vertex Refitting

- The Impact parameter method rely on the precise measurement of the Primary Vertex.
- Tracks from high pT tau decay can bias the vertex fitting, so we chose to exclude tracks from the τ decay tracks for the vertex fitting and included beam spot constraints.

Production mode	Vertex type	$\sigma_{\chi}^{\mathrm{PV}}$	σ_y^{PV}	$\sigma_z^{ ext{PV}}$
Ц \ т т	Nominal	17	17	26
$ ext{H} ightarrow au_{\mu} au_{ ext{h}}$	Refitted Beamspot-Corrected	5	5	29
7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Nominal	20	20	30
$Z ightarrow au_{\mu} au_{ m h}$	Refitted Beamspot-Corrected	5	5	34

- The above table shows the resolution plots for different choice of vertex refitting.
- Approximately 3 times improvement of resolution in the transverse plane.

MVA based τ_h decay modes

- Different hadronic τ -decay modes are reconstructed from the HPS algorithm.
- BDT based MVA technique used to improve the reconstruction of decay modes.
- The new MVA based decay modes improves assignment of 1 prong + $2\pi^0$ (a_1^{1pr}) decay channel

- The above bar chart showing efficiency and purity of these MVA and HPS decay mode method for different decays.
- The new MVA decay mode improved expected sensitivity up to 20%. The results are shown in https://cds.cern.ch/record/2727092

Event Categorisation

- Multi-classification ML algorithm (Neural Network for $\tau_{\mu}\tau_{h}$ and BDT for $\tau_{h}\tau_{h}$) used to categorise events into three categories,
 - ► Higgs: all signal process combined into one category
 - **Embedded:** background process involving two genuine τ -leptons
 - **b** jet-misidentification: background process involving at least one jet $\rightarrow \tau$ -lepton fake.
- Variables used for training MVA method for classification shown in the table.

Observable	used in $\tau_u \tau_h$ channel	used in $\tau_h \tau_h$ channel
$p_{\rm T}$ of leading τ_h or τ_μ	✓	✓
$p_{\rm T}$ of (trailing) τ_h for $\tau_\mu \tau_h$ ($\tau_h \tau_h$) channel	✓	×
p_{T} of visible di- $ au$	✓	✓
$p_{\rm T}$ of di- τ_h + $\vec{p}_{\rm T}^{\rm miss}$	×	✓
p_{T} of $\tau_{\mu} + \tau_{h} + \vec{p}_{\mathrm{T}}^{\mathrm{miss}}$	✓	×
Visible di-τ mass	✓	✓
$\tau_{\mu}\tau_{h}$ or $\tau_{h}\tau_{h}$ mass (using SVFit)	✓	✓
Leading jet $p_{\rm T}$	✓	✓
Trailing jet $p_{\rm T}$	✓	×
Jet multiplicity	✓	✓
Dijet invariant mass	✓	✓
Dijet p_{T}	✓	×
Dijet $ \Delta\eta $	✓	×
$p_{\mathrm{T}}^{\mathrm{miss}}$	✓	✓

Final Discriminant

• ϕ_{CP} distributions of the events in the signal categories are analysed in windows of increasing MVA score. This final 2D enrolled distribution used as the final discriminant.

Bkg. Flattening/Symmetrising:

- Due to the nature of the ϕ_{CP} distribution we can exploit symmetries in the bkg process to reduce statistical fluctuations in MC
- Backgrounds for where both side IP methods used(e.g. $\mu\pi$, $\pi\pi$) and jet $\to \tau_h$ backgrounds symmetrise rest of backgrounds flatten.

2. Neutral pion momenta:

- Instead of IP vector, the decay plane constructed from the momenta of charged and neutral pion.
- On special case $(a_1^{3pr} \to \pi^{\pm}\pi^{\mp}\pi^{\pm})$ select oppositely charged π^{\pm} pair with invariant mass closest to ρ^0 . Treat π with opposite charge to a_1^{3pr} as if it was neutral pion.
- · Calculate angle and sign,

$$\phi^* = \arccos(\hat{q}_{\perp}^{+\pi_o}.\,\hat{q}_{\perp}^{-\pi_o})$$

$$O^* = \hat{q}^{*-} \cdot (\hat{q}_{\perp}^{+\pi_o} \times \hat{q}_{\perp}^{-\pi_o})$$

•
$$\phi_{CP}=\phi^*$$
 if $O^*\geq 0$ else $\Phi_{CP}=2\pi-\phi^*$

3. Mixed method:

Cases where one hand is decay to 1 prong and other hand have neutral pion,

Final Discriminant

Estimation of $\phi_{\tau\tau}$: Uncertainties

- The full uncertainty information described in the right table.
- The bin-by-bin uncertainties for flattened background templates are fully correlated.
- One nuisance parameter per pair of symmetrise bins for symmetric background templates.

Uncertainty	Magnitude	Correlation	Incorp. fit
$\tau_{\rm h}$ ID	$p_{\rm T}/{\rm decay}$ -mode dependent (2–3%)	no	Gaussian
Muon reconstruction	1%.	yes	log-normal
$\mathrm{e} ightarrow au_\mathrm{h}$ ID	5(1)% 2016(2017,2018)	no	Gaussian
$\mu ightarrow au_{ m h}$ ID	20–40%	no	Gaussian
μ ID	1%	yes	Gaussian
b-jet veto	1–9%	no	log-normal
Luminosity	2.5%	partial	log-normal
Trigger	2% for μ , $p_{\rm T}$ -dep. for $\tau_{\rm h}$	no	Gaussian
Embedded yield	4%	no	log-normal
tt cross section	4.2%	yes	log-normal
Diboson cross section	5%	yes	log-normal
Single top cross section	5%	yes	log-normal
W + jets cross section	4%	yes	log-normal
Drell-Yan cross section	2%	yes	log-normal
Signal cross sections	[82]	yes	log-normal
top $p_{\rm T}$ reweighing	10%	yes	Gaussian
$Z p_{\rm T}$ reweighing	10%	partial	Gaussian
Prefiring (2016, 2017)	Event-dependent (0-4%)	yes	log-normal
$\tau_{\rm h}$ energy scale	1% (sim), 1.5% (emb.)	no	Gaussian
$\mathrm{e} ightarrow au_\mathrm{h}$ energy scale	0.5-6.5%	no	log-normal
$\mu \to \tau_{\rm h}$ energy scale	1%	no	log-normal
Muon energy scale	0.4-2.7%	yes	Gaussian
Jet energy scale	Event-dependent	partial	Gaussian
Jet energy resolution	Event-dependent	no	Gaussian
$p_{\rm T}^{\rm miss}$ unclustered scale	Event-dependent	no	Gaussian
p _T ^{miss} recoil corrections	Event-dependent	no	Gaussian
$\text{Jet} \rightarrow \tau_{\text{h}} \text{ mis-ID}$	described in text	partial	Gaussian
tt/diboson in embedded	10%	yes	Gaussian
S_{IP} in μ and π decays	25%	no	Gaussian